
Under Construction:
Delphi 3 ActiveForms
by Bob Swart

This month I’ll show what
Delphi 3 ActiveForms are: how

to create them, how to work with
them and how to use our Wizard
template from last month’s column
to create ActiveForm Wizards for
the internet.

One of the complaints I often
heard about Delphi 2 was the lack
of OCX support. Sure, we could
register and use just about any
OCX, but we couldn’t create them
ourselves using Delphi 2, without
using the third-party OCX Expert
tool. Fortunately, Delphi 3 fixes this
omission. There are at least two
major new ActiveX support fea-
tures added to Delphi 3 (apart from
native support for COM and
DCOM). The first is one step
ActiveX, which allows us to create
an ActiveX control in (you guessed
it) one step, either from an existing
VCL component or from scratch.

The second new feature, which I
think is even more interesting, is
called ActiveForms. ActiveForms
are true ActiveX controls that use
the Delphi form as a container for
other Delphi components. Active-
Forms publish ActiveX property
pages and type libraries for adding
high-speed functionality to other
environments, such as Internet
Explorer, Visual Basic, etc. In fact,
we can use ActiveForms to deliver
our applications over the internet
or the corporate intranet, as we’ll
see shortly. Because of the poten-
tial dangers of ActiveX controls,
intranets are probably the best
place for them, as we shall see.

Since an ActiveForm is in fact
just an ActiveX, I often use the two
terms for the same thing. And why
not? Everything I say about
ActiveX controls is also valid for
ActiveForms.

New ActiveForm
To create a new ActiveForm, we
only have to select File | New in the

Delphi 3 IDE and pick the Active-
Form item from the ActiveX page. In
the ActiveForm Wizard dialog (Fig-
ure 1) we derive our new Active-
Form class from the TActiveForm
base class. For the implementation
unit and project filenames I usually
pick short filenames (ie 8.3 length)
to avoid problems when moving
ActiveX library projects over net-
works or to different machines.
Note that ActiveForms can only be
added to an ActiveX library project
(resulting in a file with the OCX
extension).

The ActiveForm Wizard also al-
lows us to specify the use of
version information, which is
needed if we ever want to register
the ActiveForm in Visual Basic 4
(VB4). However, I had some prob-
lems running ActiveForms in VB4,
while in VB5 they worked fine. The
Design-Time License option can be

selected to make sure people can’t
use the ActiveForm in a develop-
ment environment at design-time
unless they have a key for the con-
trol stored in a .LIC file with the
same name as the ActiveForm.

After we click OK a new ActiveX
library project is created, with one
ActiveForm and an AboutBox form.
Taking a look inside the code gen-
erated for the ActiveForm, we see
the ActiveX project itself is just like
a regular library (Listing 1).

The {$E ocx} compiler directive
tells Delphi 3 to compile this
WizardX library and give it an OCX
Extension. The four ActiveX APIs
are already exported from this
library. Everything is already done
for us, we can concentrate on the
ActiveForm itself.

We quickly notice that there’s
one big difference between a
regular form and a TActiveForm:

library WizardX;
uses
 ComServ,
 WizardX_TLB in ’WizardX_TLB.pas’,
 WizardU in ’WizardU.pas’ {WizardActiveForm: TActiveForm}
 {WizardActiveForm: CoClass},
 About1 in ’About1.pas’ {WizardActiveFormAbout};
exports
 DllGetClassObject,
 DllCanUnloadNow,
 DllRegisterServer,
 DllUnregisterServer;
{$R *.TLB}
{$R *.RES}
{$E ocx}
begin
end.

➤ Listing 1

➤ Figure 1

22 The Delphi Magazine Issue 22

ActiveForms also have (OLE) inter-
faces. This is not something to
worry about, but just a fact of life
that happens behind the scenes.
Probably the easiest way to spot
this is the definition of the TWizard-
ActiveForm itself (full source is on
the disk):

type
 TWizardActiveForm =
 class(TActiveForm,
 IWizardActiveForm)
 ...
 end;

Multiple inheritance? Sure looks
like it! Well, rest assured, it’s not.
Or maybe it is, but only of inter-
faces, and not of classes. A Delphi
class can be derived from one
other Delphi class only, but from
one or more OLE interfaces, such
as IDispatch or IWizardActiveForm
in our case (which was generated
by the ActiveForm Wizard for us).
See Brian Long’s Delphi 3 preview
article in the May issue for details.

Another thing to keep in mind is
the fact that when compiled as an
ActiveForm, only the ActiveForm
itself will be “available” to the out-
side world. When used in other de-
velopment environments, such as
C++Builder or VB, there’s no way to
access the controls on the Active-
Form individually. As far as these
environments are concerned, the
entire ActiveForm is just one big
control. So, if we need to somehow
interface properties, methods or
events from the controls on the
ActiveForm to the outside world,
we need to re-wrap them to the
ActiveForm itself. See pages 37-5
and 38-2 of the Delphi 3 Developer’s
Guide for more information.

But we don’t have to know all
this right now. All we have to do
here is paint the form just as we’re
used to with Delphi.

WizardActiveForm
Now, lets drop the TWizardTemplate
component from last issue onto the
ActiveForm, making sure to resize
the form and components so you
again have something that looks
close to the Wizard from last
month (thanks to Hubert Klein
Ikkink, hubert@bolesian.nl, for the

new bitmap). Now drop a TLabel
with WordWrap set to True and in-
sert a message specific to this Wiz-
ard. Then, drop two more TLabels
for input and output filenames, two
TEdits, two TSpeedButtons and an
Action button, then a TOpenDialog
and TSaveDialog and one of the new
Delphi 3 TAnimate components.
Voila! Figure 2: a special Wizard
that can copy files from one place
to another on a local machine. The
only code I needed to add are the
events for the input, output and
action buttons. See Listing 2.

The cool new TAnimate compo-
nent contains a set of pre-defined
animations for CopyFile, CopyFiles,
DeleteFile, EmptyRecycle, FindCom-
puter, FindFile, FindFolder and
RecycleFile. You can also add your
own AVI animation files (most have
about 30 frames, keep that in mind
when designing yours).

This illustrates the power and
danger of ActiveForms and ActiveX
controls in general, especially

when used in a Web Browser: once
downloaded, registered and run-
ning, the ActiveX control has
access to your entire PC and can do
as it pleases. For this reason, code
signing has been invented. But still,
it’s important to realise that an
ActiveX control or ActiveForm run-
ning in your Web Browser can in
fact access your entire machine
and wreak havoc. My recommen-
dation is to never download, regis-
ter and run ActiveX controls from
unknown third parties.

Web Deployment
Compiling the ActiveX library pro-
ject results in an ActiveX file, with
the .OCX extension: WizardX.OCX
in our case. We can use this file in
a Win32-only Web Browser such as
Microsoft Internet Explorer 3.0 or
higher and Netscape Navigator 4.0
or higher, but first we need to
perform one final step: specify the
Web Deployment options in the
Project menu (Figure 3).

➤ Figure 2

procedure TWizardActiveForm.BtnInputFileClick(Sender: TObject);
begin
 OpenDialog1.FileName := EditInputFile.Text;
 if OpenDialog1.Execute then
 EditInputFile.Text := OpenDialog1.FileName;
end;
procedure TWizardActiveForm.BtnOutputFileClick(Sender: TObject);
begin
 SaveDialog1.FileName := EditOutputFile.Text;
 if SaveDialog1.Execute then
 EditOutputFile.Text := SaveDialog1.FileName;
end;
procedure TWizardActiveForm.EditInputFileChange(Sender: TObject);
begin
 BtnAction.Enabled := (EditInputFile.Text <> ’’) and (EditOutputFile.Text <> ’’)
end;
procedure TWizardActiveForm.BtnActionClick(Sender: TObject);
begin
 { copy EditInputFile.Text to EditOutputFile.Text }
 Animate1.Active := not Animate1.Active;
end;

➤ Listing 2

24 The Delphi Magazine Issue 22

The first page of this dialog has
to be filled in completely before we
can deploy our ActiveForm. As the
on-line help and manuals are not
too clear about what to specify as
the Target dir, Target URL and HTML
dir, let’s look at these in detail.

The Target dir should contain
the full pathname of the directory
on the web server (or intranet
fileserver) where the ActiveX is to
be copied to. If you are already
working on the web server, this can
be a local path. Otherwise, it will be
a mapped drive (such as drive N: in
my case) or a UNC pathname, such
as:

\\BOLESIAN_1\VOL3\www\groups\
 delphi\wizardx

The Target URL should contain the
URL (without the filename) for the
outside world to get to the above
pathname, in my case:

http://www.bolesian.nl/groups/
 delphi/wizardx

on our local intranet. This entry is
used to generate the codebase for
the OBJECT tag in the generated
HTML file.

Finally, the HTML dir should con-
tain the full pathname of the direc-
tory, either local or on the web
server, where you want to create
your HTML test page. I usually
place this file on the web server as
well, in the same directory as the
ActiveForm itself.

The general options include the
use of CAB file compression, which
is especially useful in an internet
environment (where every byte to
download counts), since Active-
Forms get big really fast. We can
minimise the size of an ActiveForm
by using both CAB and packages
(more about packages in the next
issue). For local intranet deploy-
ment, however, I usually don’t
bother with CAB or packages.

Code signing is another option
that’s most useful in an internet
environment. In a local intranet, I’d
trust most ActiveX or ActiveForms

without code signing (this will vary
from company to company), on the
internet I’d never download an
ActiveX or ActiveForm without
code signing.

Actually, this last thing is not
hard to enforce if you’re using
Netscape Navigator version 3,
which doesn’t support ActiveX
controls without the ScriptActive
plug-in from NCompass. A 30-day
trial version is at

http://www.ncompasslabs.com/
 products.htm

Once we’ve finished filling in the
Web Deployment Options dialog, it’s
time to select the menu item
Project | Web Deploy which then
copies the ActiveX to the specified
directory on the web server and
generates the HTML test page
(either local or also on the web
server). The generated HTML test
page for my WizardX ActiveForm is
shown in Listing 3.

The first thing I noticed is the
fact that the codebase contains the
full path of the WizardX.ocx, while
this file is in the very same direc-
tory on the web server where the
HTML test page (and final deploy-
ment page) is. So, I edited this file
and changed this line to:

codebase=
 “WizardX.ocx#version=1,0,0,0"

and sure enough, things still work
fine (it turns out you can specify a
relative path in the codebase,
knowledge which can be quite
handy if you want to keep your
HTML pages and ActiveX controls
together at all times).

Now, how do we use the Active-
Form from anther machine? We
don’t need to register the Active-
Form before downloading it via the
web. Actually, that’s the whole
point of web deployment, to take
care of this nasty business. All we
need to do from another machine
is point an ActiveX enabled web
browser to the HTML test page
we’ve just generated.

The codebase will tell the web
browser where to download the
ActiveX control from (ie download
it from the web server and place it

➤ Figure 3

<HTML>
<H1> Delphi ActiveX Test Page </H1><p>
You should see your Delphi forms or controls embedded in the form below.
<HR><center><P>
<OBJECT
 classid="clsid:2A16BE8C-C309-11D0-A1E6-00805F6C3277"
 codebase=
 “http://www.bolesian.nl/groups/delphi/wizardx/WizardX.ocx#version=1,0,0,0"
 width=350
 height=250
 align=center
 hspace=0
 vspace=0
>
</OBJECT>
</HTML>

➤ Listing 3

June 1997 The Delphi Magazine 25

on the local machine. Let’s take a
look at deploying with Microsoft
Internet Explorer 3.

Internet Explorer 3
With Microsoft Internet Explorer
3.0 (included on the Delphi 3 CD-
ROM) you must go to the View |
Options | Security dialog and set
the security level to medium. A
level of high will cause Internet
Explorer to skip all non-certified
ActiveX controls. Setting the level
to medium you get a warning mes-
sage. Setting the security level to
low will stop all messages, but
that’s a little risky when you con-
nect on the internet, though on a
corporate intranet it would be fine.

After you’ve allowed Internet
Explorer to go ahead and try
installing the ActiveForm, first the
GUID is checked to see if the con-
trol has already been registered. If
not, Internet Explorer will use the
codebase to download the ActiveX
control to the \windows\occache
subdirectory, call LoadLibrary on
the control and call the control’s
DllRegisterServer function. If the
library cannot be downloaded
(incorrect URL), or cannot be
loaded (because it contains static
references to DLLs which Windows
cannot find) or if Windows can’t
find the DllRegisterServer API, or
the call to DllRegisterServer fails,
then all we see is an empty box in
Internet Explorer with a small X in
the upper left corner.

If all is OK the ActiveForm will
be installed and registered and
Internet Explorer will then attempt
to create an instance of your con-
trol. Your DllGetClassObject func-
tion will be called, from which
Internet Explorer will obtain an
IClassFactory for our ActiveForm
control. The browser will then call
IClassFactory.CreateInstance to
create an instance of the Active-
Form. If for some reason our con-
trol fails to create itself (for
example when an exception is
raised in the constructor) we’ll also
see the small red X.

Finally, just make sure you’re
running Internet Explorer version
3.01 or 3.02, since the plain version
3.0 not only has some security
problems (you can activate any

executable on your disk!), it also
has major download problems
with ActiveX controls.

Anyway, assuming everything
above goes as planned, Internet
Explorer activates our ActiveX con-
trol, which for the WizardActiveForm
looks like Figure 4.

Wow! Our first Delphi WizardAc-
tiveForm alive and kicking in
Internet Explorer! Let’s move with
the mouse to one of the edit boxes
and edit some text. Hmmm, as soon
as you try to use the arrow keys,
something seems to be wrong. The
problem is that the controls don’t
see the arrow or tab keys, so the
only way to navigate around within
them is with the mouse: not nice for
a keyboard intensive activity. This
is caused by a bug in Internet
Explorer which causes it to eat the
arrow keys until you tab out of the
control and then back in again.
Note that it’s not a bug in Delphi
and the same ActiveForm will
function just fine in other
environments.

ActiveForm Employment
Apart from using ActiveForms in a
web browser on the internet or in-
tranet, we can also deploy them in
a development environment such
as Visual Basic (5, 4 gives some
problems), or, of course, Delphi (2
or higher). Since this is The Delphi
Magazine, let’s try it in Delphi 3 just
for the fun of it.

Select the Component | Import
ActiveX Control menu item, click
Add and select WizardX.OCX (or
whatever).

As we can see from Figure 5, the
ActiveX control is read and the
class name TWizardActiveForm is
identified. Note that we can have
multiple class names, since one
ActiveX library project can contain
more than one ActiveForm. Now,
what should we do next: click
Create Unit or Install? Actually,
Install also creates a unit, opens
the Package Editor and installs the
unit in the package you specify
(Figure 6). Create Unit just creates
a unit and displays the unit code in
the code editor without including
the unit in the current project. So,
usually you will click Install.

After installation we can find the
TWizardActiveForm on the ActiveX
palette page and if we drop it on a
new form we see the old TWiz-
ardTemplate back again, but this
time as an ActiveX control. If we
right-click on the ActiveX (Active-
Form), we see a pop-up menu with
various options (such as property
pages: a topic for another time),
including the ActiveX AboutBox we
implemented.

Dynamic ActiveForm
We can even dynamically create an
instance of a TWizardActiveForm on
the fly. For this, the information in
the WizardX_TLB.pas unit with the

➤ Figure 4

26 The Delphi Magazine Issue 22

type library is used. Unfortunately,
most of this information is needed
at compile time, so it looks like we
cannot write a general ActiveForm
viewer that takes a “foreign” .OCX
file (now that would be neat!). Any-
way, the unit to create a dynamic
instance of TWizardActiveForm is
implemented as shown in Listing 4.

Note that like any other control,
we need to set the Parent property
to Self, otherwise the ActiveForm
wouldn’t be shown inside the
parent form.

Activate Form
Now, just suppose we already have
a rather big Delphi 2 project with
many forms. Can we simply re-
compile these as ActiveForms?
Unfortunately, it’s not as simple as
that. An ActiveForm is a special-
ised OleControl with special OLE
interfaces attached to it (remem-
ber the “multiple inheritance”
part?). We cannot just make a form
an ActiveForm, because they’re at
two entirely different locations in
the VCL hierarchy, and besides,
the project types are different
(plain executable for plain forms
and an ActiveX library for Active-
Forms). What can we do?

One solution for converting plain
forms into ActiveForms is to create
a component template from an ex-
isting form and then drop it onto an
ActiveForm. That way, all the
events are taken over without
manually having to type them in
again. Hmmm, remember the TWiz-
ardTemplate? Sure sounds like
we’ve been doing exactly this since
last issue... (I have to admit, this
was a setup from the beginning!).

So, from any big project, just
open up a form, select the menu
item Edit | Select all, then
choose Component | Create Compo-
nent Template. It’s easiest to give
each component template a name
which reflects the name of the form
being converted. After you’ve con-
verted all your forms into compo-
nent templates, just close your old
project and start a new ActiveX
library (by creating the first new
ActiveForm). For each form to con-
vert, create a new ActiveForm and
drop one of the component tem-
plates on that ActiveForm. It may
be a bit of a mess at first, but it sure
is one way to convert all your plain
Forms into ActiveForms.

Another solution, which I’ve
been using a lot on our local intra-
net, is just to use one “real” Active-
Form as the introduction to an
ActiveForm application and use
the plain forms from the old Delphi
2 project just as they are, as plain
forms. This way, we can even use

two project wrappers (one plain
EXE and one ActiveX library) that
both use the same “plain” forms,
and just have one set of code to
maintain! The introductory Active-
Form is displayed in the web
browser as usual and can pop-up
(with ShowModal) the plain forms as
forms. It’s really strange at first to
see your whole application come
alive from a web browser, but once
you realise that the entire applica-
tion is in fact inside this ActiveX
library, with the ActiveForm just
acting as a big Splash Screen, it’s no
big deal any more. At least in an
intranet environment, people may
not be scared too much by forms
popping up from the browser (in
fact, most of the people who saw
this were quite amazed and wanted
to make an ActiveForm them-
selves). On the (outside) internet,
I’m not so sure. On the one hand, a
real form will illustrate the danger
of ActiveX controls so much better:
a real application can do anything,

➤ Left:
Figure 5

➤ Right:
Figure 6

unit Unit1;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 OleCtrls, WizardX_TLB, StdCtrls;
type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private
 Wizard: TWizardActiveForm;
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
 Wizard := nil;
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
 if Assigned(Wizard) then Wizard.Free
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 Wizard := TWizardActiveForm.Create(Self);
 Wizard.Parent := Self;
 Wizard.Height := 377;
end;
end.

➤ Listing 4

June 1997 The Delphi Magazine 27

whilst a web browser “feels” rea-
sonably safe. Yet, I’m more than a
bit willing to believe that the aver-
age internet user would not like
applications popping up from their
web browser...

Lessons
So, what have we learned today? A
lot, I’d say. First of all, it’s easy to
write an ActiveForm. Second, an
ActiveForm is just an ActiveX, but
one that can contain multiple
sub-controls. Third, we can deploy
an ActiveForm just like an ActiveX
on a Win32 web browser, like
Microsoft Internet Explorer 3 or
Netscape Navigator 4, or in a devel-
opment environment such as
Visual Basic. Fourth, it’s not so
easy to convert a project consist-
ing of many forms to an ActiveForm
project, although Component
Templates help a lot.

Let’s not forget another impor-
tant reason why ActiveForms are
best suited to an intranet: database
support. Since an ActiveForm is

running on the web browser on the
client machine, it can’t do any da-
tabase stuff on the server (without
either making an ODBC connection
or using the TClientDataSet, which
isn’t easy to do). To do local data-
base stuff, the Borland Database
Engine (BDE) must be installed on
the client machine. Now, how many
client machines on the internet
would have the BDE installed? Not
that many, I think. But, how many
on your company intranet? Almost
everyone at my company has the
BDE installed. Of course, another
option is to use a database engine
which can be built into an
executable, such as TurboPower’s
new Flash Filer.

Next Time
Now that we’ve seen what Active-
Forms are, let’s return to one of the
issues mentioned often in this
column. A hot topic, first demon-
strated by none other than Anders
Hejlsberg last year at the first
public demo of Delphi 97, which we

now know as Delphi 3. I’m talking
about packages, of course. The
Holy Grail? Or Pandora’s box? We’ll
find out next month. Stay tuned,
and until Bill Gates becomes CEO
of Borland, make mine Delphi!
[“until”?!! What do you know that we
don’t, Bob...? Editor].

Bob Swart (home.pi.net/~drbob/),
aka Dr.Bob, is a professional
knowledge engineer technical
consultant using Delphi and
C++Builder for Bolesian, freelance
technical author and co-author of
The Revolutionary Guide to Delphi
2. Bob is now co-working on
Delphi Internet Solutions, a new
book about Delphi and the
internet/intranet. In his spare
time, He likes to watch video tapes
of Star Trek Voyager and Deep
Space Nine with his 3 year old son
Erik Mark Pascal and his 7 month
old daughter Natasha Louise
Delphine.

28 The Delphi Magazine Issue 22

	New ActiveForm
	WizardActiveForm
	Web Deployment
	Internet Explorer 3
	ActiveForm Employment
	Dynamic ActiveForm
	Activate Form
	Lessons
	Next Time

